Solutions for week 1 and 2

Dang Jinlong
October 6, 2023

Problem 1
Show that the 4D volumn element is invariant under Lorentz transformation:

d*r = d*z’' (1)
Solution:

ox*
4 4
d'r = det((’)aj’”)d x (2)

2o is a Lorentz transformation thus det(2%;) = |A% | = 1, since A*, € SO(1,3) and A“ng,/\”;, =
gy -
Problem 2
Show that under a Lorentz transformation,

Pk Ak

2_ 20 (3)

namely, it’s also Lorentz invariant.

Solution:

Notice
/d4kf(k) § (k* —m?) |k0>0

:/d3k: dkof(k) 6 (ki — k* —m?) |ko>0

[ 5 (ko — VEZ + m?) (4)
d3k
:/mf(wkak’)



with m = \/w} — k2. As 0(k* —m?)|, oo = 0 (k> —m?) 0 (wy) is Lorentz invariant, the identity
above holds for any Lorentz invariant fuction f(k) meaning

/ Ak f (k) 6 (K2 —m?)|, _,
_ / AR F(K) 6 (K2 = m?)],,

Zwk
A3k’
! !
= wy, k
[ ot i)
So gZ—t is Lorentz invariant.

Problem 3

Show that the action for a free Klein-Gordon field is invariant for Lorentz transformation A,
where det(A) = 1.

Solution:

For Klein-Gordon field

S = /d%ﬁ
— /d4x (%(@gb)Z — %m2¢2>
ozt 1 1

(6)
— /d%' det <w) (59”’\AV#A"/\3{,¢8;¢ - §m2¢2(x'))

— / d*z’ (%(G'ng)z — %ngbQ) :

Problem 4

Explain why we don’t need a linear term of ¢ in the Lagrangian for a free Klein-Gordon field.

Solution:

If there is a linear term in Lagrangian of a free Klein-Gordon field,

1 1
L= §au¢aﬂ¢ — —m2¢* + a¢

2
1 1 a2 a?
_ = A 2 _ —_ 7
5 Ou006 = 5m <¢ m2> T ome (7)
1 1 a?
_ ¢/6M¢/__m2¢/2+_
2K 2 2m2

where ¢’ = ¢ — -%. So this Lagrangian is equivalent to a one without a linear term.



Problem 5

In d space-time dimension, what is the dimension of the following Lagrangian? What is the
dimension of a,,?

1 - .
L= 50,00" + ; an (8)

Solution:
S = / d*xL (9)

and [S] =0, then [£] = M? = [¢] - 52 = [a,] = d — n52

Problem 6

A space-time translation operator 7'(a) is defined as T'(a) = exp(ia*P,), where P, is the
momentum operator. Show that 7'(a) is unitary. A scalar field transforms under T'(a) as

T(a)'¢(x)T(a) = ¢(x — a)

Solution:

T(a)'T(a) = exp(—ia*"P,) exp(ia"P,) = I (10)

Part (a)

e Let a, be infinitesimal. Derive an expression for [P,, ¢(x)].
Solution:
As a* — 0, T(a) =1+ ia,P* 4+ O(a®) and ¢(x — a) = ¢(x) — a*d,¢(z) + O(a?).

T(a)'¢(x)T(a) = ¢(x) — ia"[Py, 6(x)] + O(a?)

= ¢(z) — a"0,0(x) + O(a?) (11)

So
o(x) = ilP*, o(a) (12)

Part (b)

e Show that the time component of your result is equivalent to the Heisenberg equation of
motion ¢ = i[H, ¢(x)].

Solution:

As P* = (H, P), the time component of the result is g () = i[H, ¢(z)] = ¢ = i[H, ¢(z)]

Part (c)

e For a free field, use the Heisenberg equation to derive the Klein-Gordon equation.



0.0.1 Solution:

¢ =ilH ¢ =i B /d%;’ (7° + (V§)* + m°¢?) ,gb]

= /dgx’é(g)(w — ') (x' 1) (13)
= m(x,t)
T =i[H, 7] =i B/d?’x’ (7° + (V9)* + m*¢?) ,w}
(14)

= /d3x’(5(3) (x —x')(V? —m?)p(x’, 1)

— (V2 = m?)o(a, 1)
Also notice m = g—g — ¢ , then there is the Klein-Gordon equation d%¢ = (V2 — m?)¢(x, t).

And in the derivation about the following facts are used.

[¢(w,7t)7¢(wvt)] = [W(ﬂ:,,t),ﬂ(w,t)] =0 (15)
[Vé(a', 1), d(x,1)] = Var[p(2', 1), d(x,1)] = 0 (16)
[b(, 1), 7(y, )] = 16 (z — y (17)
[7(a’,1)%, ¢z, t)] = m(a’, )[m (2, 1), (@, )] + [7(2, 1), (. 1) |7 (2", 1)
)
)

. (18)
= —2i6® (@ — & )m( t
[¢(a’, )%, 7(,t)] = o’ )[o(x', ), m(@,1)] + [¢(2', 1), 7(®, )] (2, 1)
. (19)
= 26 (x — x")p(z’, t)
(Vo' 1), m(z,t)] = V(@' )[Vo(a', 1), n(x, )] + [Vo(a', 1), m(2, 1) V(X' 1)
= 2iVo(x', 1)V (x — 2') (20)
- _225 ( )V2¢< /7 )
Part (d)
Define a spatial momentum operator
P / P (2)V () (21)
Use the canonical commutation relations to show that P obeys the relation you derived in part
(a).
Solution:
(P(t). 0.0 =~ [ dylr(y, 1) Vo(y.t).o(a. 1)
—— [ @ity o) 6.0V oly.0 )
=i [ &’yo®(z —y)Vo(y,t)
=iVo(x,t)
Part (e)

Express P in terms of a; and a;rc.



Solution:

Let’s denote f&%:fo As 7 =92 = ¢ and

(27)3 2wy ¢
o(z) = /d?c(akeikx + al e7tkT) (23)
S0
m(z) = /d%(iwkakeim — iwgal e ) (24)
and
Vo(z) = / dk(—ikare™ + ikale™*7) (25)
then

P / B ()Vo(x)
= — /d?’x {/Zl\lg(iwkakeikx — iwkaze_ikx)] {/ Zl%ik(—ikakeikx + ikaze_““)]
- _ /d%gl%cﬁ:/’wkk' [akeikx — aLe_ik‘”] [ak:eik/x — a};,e_iklf”]
=— /d?’xglzcﬁ’wkk’ [akak/ei(’”k,)” — alap e PT _ gpal kKT 4 aLaL,e‘i(“k/)x}
= —(27)? / dkdk wi K’ [(akak/ei(“’ﬁ“k’)t + al.al e te)t) 5O) (kg 4 k) (26)
—(afaw @t - ggal, e @Rt 5E) (g — k/)}
= —%/dAl;:k [(aka_keﬂw’“t +alal et — (alay + akaL)}
= %/Zi\lgk(a,tak + agal)

= / Zl\lgkajcak

In the last two lines all odd terms (thanks to the k in front) vanish when integrating over all
space.

Problem 7
The time-ordered product of two fields, A(x) and B(y), is defined by
T[A(z)B(y)l = 0 (2 — ") A(x)B(y) + 0 (y° — 2”) B(y) A(z) (27)

Using only the field equation and the equal time commutation relations, show that, for a free
scalar field of mass m,

(02 +m®) 01T [¢(2)9(y)]|0) = 6 (2 — ) (28)

Find the constant c.



Solution:

Notice exp(ia* P,)¢(x) exp(—ia*P,) = ¢(x + a), and it can be used to translate y to the origin.

(0T (b (x)d(y)]|0) = (OIT[e¥" ¥ d(x — y)e ™ e T p(0)e™" T4]]0) =

OITTo(x — y)¢(0)]]0)

(29)
For simplicity let’s consider (0|T'[¢(z)¢(0)]]0).
From the Klein-Gordon equation (92 + m?)¢(z) = 0 and 7 = ‘% — ¢, then
(0% +m*)T[¢(x)$(0)] = (0} +m?) (0 (2°) ¢(2)6(0) + 0 (—2") ¢(0)¢(2))
= 92 (0 («°) $(a)(0) + 6 (— 1:0) 0)6(x))
+ (=V? +m?) (9 (mo) o(z)p(0) + ( x ) x))
=i (8 (+") 6(2)$(0) — 8 (2°) (0)6 () + 6 (x ) m(2)¢(0) + 0 (~2°) ¢(0)7())
+ (=V2 +m?) (0 (%) ¢(2)$(0) + 0 (—2°) $(0)p())
=0, (0 (") m(2)¢(0) + 0 (—2") ¢(0)7(x)) (30)
£ (=24 m?) (8 (") 6(@)0(0) + 8 (~a) $(0)6(x)
= (5( ") w(2)¢(0) = 6 (2°) $(0)m(x)) + (6 ( ) (2)6(0) + 0 (=2°) $(0)7(x))
(=V2 +m?) (0 (%) ¢(2)p(0) + 0 (—2°) $(0)p())
—5( )[ (), 6(0)] + T [(0% + m*)¢(x)(0)]
= 0" (x)
which is (92 + m®)T[p(z)p(0)] = —id™ (x), then (0](0? + m?)T[p(x)p(0)]|0) = —id™ (x).
This implies
(92 +m®) O T[p(2)()][0) = —i6™ (2 — y) (31)
which means ¢ = —i.
Problem 8
Considering the following Lagrangian:
L =1)"0gp + bVy™ - Vip (32)
where 1 is a complex scalar field and b is a real constant.
Part (a)
elind the Euler-Lagrange equations.
Solution:
From 2 6¢ 8uag£¢) = 0, there are | .
100" = —bV=Y (33)

10t = bV

Part(b)

eFind the plane-wave solutions, those for which v is of the form ¢ = e=**P® and find w

as a function of p.



Solution:

Expand the classical scalar field

v(w) = [ e i) (34)

then
(w+bp?)i(p) = 0 (35)
w = —bp? (36)

Part (c)

eAlthough this theory is not Lorentz-invariant, it is invariant under spacetime translations
and the internal symmetry transformation

Y= eT Y, Pt ey (37)

Thus it possesses a conserved energy, a conserved linear momentum, and a conserved charge
associated with the internal symmetry. Find these quantities as integrals of the fields and their
derivatives. Fix the sign of b by demanding the energy be bounded below.

Solution:

From P, = [d*xTy, and Q = [d*xzJy, where T, = Zna l,gbn gl and J, =
el Pn
X i) 30
H= —b/d%vw* Vi
P=— / d>xi)*Vp (38)

Q- / P
Thus b < 0.

Part (d)

eCanonically quantize the theory. Identify appropriately normalized coefficients in the expan-
sion of the fields in terms of plane wave solutions with annihilation and/or creation operators.
Write the energy, linear momentum and internal-symmetry charge in terms of these operators.

Solution:
Assume
dsp —iwpttip-x T —iwpt—ip-x
P(x,t) = 2n)? (u(p)ape P +v(p)bye"? ) (39)
then
* d3p * iwpt+ip-x * t Jiwpt—ip-x
¥ (x,t) = 2n)? (v (p)bpe™r +u*(p)a,e™? ) (40)
where w, = —bp”.

When imposing
ap,aly| = (2709 (- p) (41)



and
o, bly | = (27)%) (p — ) (42)
there are
[(x,1),¥(y, )] = [7(x,t),7(y, 1)] = 0
[W(x, 1), 7(y, )] = 6™ (x —y)

_ 0L __ % * * _ . )
where m = o = ip* , when u(p)u*(p) — v(—p)v*(—p) = 1. Moreover, this theory can’t be

(43)

bounded below if v(p) # 0, which tells that in this scalar field without Lorentz symmetry
anti-particles do not show up. So the correct field operator show be

T (44
" ap.aly] = 2r)' (p— p) (45)
N H= | d®pwpala, (46)
P= / d*ppalay (47)
Q= / d*palay, (48)

Part (e)

e Find the equation of motion for the single particle state |k) and the two particle state
|k1k2) in the Schrodinger Picture. What physical quantities do b and the internal symmetry
charge correspond to?

Solution:

A one particle sate with proper normalization ( (p|q) = (27)26®)(p — q) ) is |k) = al.|0).

- _ = — —ilat H
51k = 5ak10) = —ila, #]0) )
.0
= za|k> = wi|k) = —bk?|k)
Similarly,
0
is kiko) = —b (k] + k3) [kiko) (50)

b corresponds to m~! and internal symmetry charge corresponds to the number of particles.



	Solution: 

